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Abstract-The implications of lateral inertia on linear elastodynamic crack propagation in plates
are studied, using a more accurate approximation of the equations of motion than the one of plane
stress. It is found that the stress-strain field near the crack edge is, in general, plane stress like in the
respect that the energy release rate coincides with what is predicted from the plane stress approxi
mation. The stress intensity factor and the crack opening displacement are, however, different from
those found from this approximation, and they are obviously governed essentially by plane strain
domination near the crack edge and to a lesser extent by lateral inertia.

1. INTRODUCTION

The vast majority of crack problems appear to concern plane cases, either plane strain or
plane stress. Pure plane strain cases can, however, seldom be realized, and "plane stress"
usually refers to the plane stress approximation generally used when dealing with "thin"
plates. It is, however, well known that a crack in a plate is subjected to something resembling
plane strain conditions near the crack edge but which comes close to the plane stress
approximation far away from the edge. Assuming infinitesimally small scale yielding, Yang
and Freund (1985) and Rosakis and Ravi-Chandar (1986) showed that, for stationary
cracks, the plane stress approximation appears to hold with decent accuracy at distances
from the crack edge that are larger than about half the plate thickness. Broberg (1987)
showed that although different conditions prevail near to and far away from the crack edge,
the J integral for a path near the edge equals the J integral for a sufficiently remote path
(note that the J integral is not defined for paths in the intermediate mixed plane strain/plane
stress region).

For running cracks in a plate an additional complication enters, namely lateral inertia,
the implications of which will be investigated. To this end a more accurate approximation
of the equations of motion than the plane stress approximation is sought, and this more
accurate approximation is then used for analysing a simple problem of dynamic crack
propagation in a plate.

2. EQUATIONS OF MOTION

Study a plate with thickness 2h, subjected to in-plane loading at the edges. A Cartesian
coordinate system, x, y, z, is introduced with the origin in the mid-plane and the z direction
normal to the plate surfaces. Conventional denotations, u, v, w for displacements, and ex,
ey, eo, rXl' r,o, ro, for strains, are used.

It is now assumed that an essentially in-plane motion in the plate can be described
approximately by an equation of motion that contains only x, y and t as independent
variables, as in plane stress or plane strain cases. Here, however, the influence of lateral
inertia is also considered. It is assumed that
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u = u(x,y, t)

v = L'(X, y, t)
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(1)

(2)
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Go = G?(X,y, t) (3)

and, thus

lV == c.,.· z. (4)

Then

Gx = GxCx,y,t) (5)

Gy = Gy(x,y, t) (6)

au au
(7)Yx,' =8+a. y x

aw oGz
(8)YX? = ax = z ax

ow aGz
(9)Yr? = oy = z oy .

The equations of motion will now be determined by using Hamilton's principle. To
this end the kinetic energy, T, and the potential energy, U, are needed. One obtains:

(10)

(II)

After use of Hooke's law

I xl' = J1Yxl" etc.

where J1 is the modulus of rigidity and v Poisson's ratio, one obtains

J1(y2 + },2 +,,2 )- '2 xv yz rzx'

The variation

1JI = 1Jf11 fh (T - U) dzdydxdt = O.

(12)

(13)

(14)

(IS)

Here the subscripts t, x and y indicate arbitrary regions of integration in the t and xy
domains. The inner integral is now written as
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{(aU)2 au au (01')2 h2[(0.ez )2 (oez )2]}~J.lh - +2-~+ -.:;- +- -::;- + - .oy oy ox Ox 3 ox oy

Variation gives:
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(16)

(17)

where· .. indicates that variation is performed with respect to all arguments of function F.
Partial integrations of all integrals, except

(18)

which is already in the desired form, express (jJ in terms of variations of u, l' and ezo Thus,
for instance

fI1~:6udtdydx = 1I[~:6U]' dydx- fI1:t (~:)6UdtdYdX

= - fIl:t(~06udtdYdX (19)

and, hence, (jJ becomes expressed in the form

Since the variations of u, l' and ez are arbitrary, except that they vanish at the domain
boundaries, the variation of (jJ vanishes only if the expressions inside square brackets in
eqn (20) vanish:

o (00 e (OF) 0 ( 0F )--+--+- =0
ot ou ox OB, oy o(oujey)

a(an e (OF) 0 ( of )--+--+- =0at of; oy OB, ax o(ev/ox)

o (OF) 0 ( of ) e ( of ) of
ot (Hz + ox e(ee)vx) + ay O(Of:)Oy) - oez = o.

Insertion of F, from eqn (16), gives the equations of motion

(21 )

(22)

(23)
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ph
2. a2e, + 2(l-v)Jl 10_+ 2vJl (OU + OV)_ Jlh

2(02 ez + 02 ez ) = O. (26)
3 Ol2 1-2v - I - 2v ox oy 3 ox2 oy2

Elimination of ez between eqns (24) and (25) gives

(
I 0

2 )(ou ov)
L1- c;' al2 oy - ox = 0, (27)

where L1 is the Laplace operator and Cs is the propagation velocity of S-waves (secondary
waves), i.e.

2 Jlc =
s p (28)

The displacement vector in the xy plane can be represented by the potentials <I> and \}I

according to Helmholtz's decomposition:

0<1> o\}lU=-+-oX oy

0<1> o\}lv=---oy ax'

(29)

(30)

In eqn (27) the displacements U and v appear only in the context of the rotation,
ou/oy-ov/ox = L1\}1, so that the equation can be written in the form

(31)

Multiplication of eqn (24) by %x and of eqn (25) by %y gives, after addition, an
expression for L1e z , which is then used to eliminate ez from eqn (26). It turns out that u
and v in the resulting equation appear only in the context of the in-plane dilatation,
ou/ox+ ov/oy = L1<1>, and the equation can be written in the form

where cp is the propagation velocity of P-waves (primary waves) in an infinite medium, and
Cpl is the propagation velocity of P-waves in a plate under the plane stress approximation.
It can be noted that the propagation of S-waves is the same for waves in a plate as for an
infinite medium-they are simply equivoluminal waves. P-waves in an infinite medium are
irrotational. The two P-wave velocities in eqn (32) are given by
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, 2 p. , 2
C-1 = --" - = 4(I-k")c

P I-v p "
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(33)

(34)

where k, the ratio between equivoluminal and irrotational wave velocities, is related to
Poisson's ratio v through:

1-2v
k2 =---

2(l-u)'
(35)

Equation (31) is the same as for plane stress or plane strain. Equation (32) agrees with
the plane stress equation for <D when h -40 and with the plane strain equation when h -4

00. There is also one part in eqn (32) that indicates S-wave propagation coupled to P
waves-this might be explained by the fact that P-waves in a plate are not fully irrotational,
since they will be accompanied by shear strains {c and YI'Z' due to waves of lateral contrac
tion.

In analogy with the plane stress or the plane strain case <D and '¥ can be sought among
functions that satisfy egns (32) and (31) inside the braces, only. Thus one obtains the
equations of motion

(36)

(37)

3. REPRESENTATION OF STRAINS AND STRESSES

From the representations (29) and (30) of displacements one obtains the strains

a2 <D a2 '¥
£ =~_--

I 8y 2 8xay

(38)

(39)

(40)

The x and y derivatives of the third normal strain are found from egns (24) and (25).
Making use of egn (37) one obtains after integration:

(41)

The stresses are now found by using Hooke's law:
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0[',
r,o = f1Z~. oy

(42)

(43)

(44)

(45)

(46)

(47)

4. UN I-DIRECTIONAL WAVES

Since the equation for 'P is the same as for plane strain, it is obvious that unidirectional
S-waves in the plate travel with constant velocity c" i.e. there is no dispersion for S-wave
pulses. The propagation velocity c of a harmonic P-wave, travelling in the x direction,

<I> = Aeiw(t-X!c)

will, however, vary with w. Insertion into eqn (36) gives the equation

(48)

(49)

where L = A/2h is the ratio between the wavelength It. = 2nc/w and the plate thickness 2h.
The solution C/Cpl is plotted against L in Fig. I for Poisson's ratio v = 1/3, i.e. k = 1/2. It is
seen that the propagation velocity increases from the one for S-waves, C = c" towards the

1 I
0.9 ~

0.8

0.7

0.6
,
l0.5 L........~_L..-..-.~_L..-..-.~_L..-..-.~--'-'

a 0.5 1 1.5 2

Wavelength, 1J2h

Fig. 1. Dispersion relation, clcpl vs J.12h. for uni-directional harmonic P-waves c -+ c, as A-+ 0;
k = 1/2 (v = 1/3).
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propagation velocity Cpl for plane stress P-waves, when the wavelength increases. This is
perhaps the expected behaviour, but one should keep in mind the approximation that 8z is
taken to be independent of z, which implies that it is in general less good for wavelengths
that are smaller than the plate thickness than for larger ones. The series expansion for large
wavelengths is:

+ 7[4 (3 -4k
2
)(1- 2k

2
)2(13 -112k

2+212k
4

- l12e) . (2h)4 + .. '. (50)
1152(1-k2)2 A

For k = 1/2 one obtains:

~ = 1_ 7[2 (2h)2 _~ (2h)4 + .. '.
c~ 36 A 2592 A

(51 )

5. RAYLEIGH WAVES

Rayleigh waves propagating along a plate edge will exhibit dispersion, due to lateral
inertia. A semi-infinite plate, y ~ 0, is studied with respect to the possibility of wave
propagation along the edge. To this end a constant amplitude harmonic wave, with angular
frequency OJ, is assumed to travel with velocity CR in the positive x direction. The boundary
conditions on y = 0 are

CT r = 0

T\T = 0

T rz = 0

and, in addition, these stresses must vanish as y ---t - CfJ.

It is convenient to introduce dimensionless quantities,

(52)

(53)

(54)

xx=-X·
v

y==--
X'

(55)

(56)

where X = KhlJ3 with Kdenoting the ratio between the propagation velocities of S- and P
waves in the plane stress approximation, i.e.

c 1 J(I- V)
K= C;1 = 2J(I-k2) = -2~' (57)

Keeping, for simplicity, the function symbols <1> and 'P, although the arguments are
now X, Y, T, the equations of motion read:
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The boundary conditions (52) and (53) take the form:

Assume that

l1> =f(Y) cos [O(T-XICR)]

'¥ = g(Y) sin [OCT-XICR)]'

(58)

(59)

(60)

(61)

(62)

(63)

(A cosine term for '¥ would disappear when the boundary conditions are satisfied.)
Insertion of eqns (62) and (63) into (58) and (59) gives

with the solutions

f = A exp (0:1 Y) +Bexp (0:2 Y)

9 = Cexp (0:3 Y),

where

0(1) 2(1 2) 2(1 2)b, = 0- - - 1 , bp = 0 - - k , bpi = 0 - - K
C~ C~ C~

Use of the boundary conditions leads to the system of homogeneous equations

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)
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(2- C~)(A+ B) - 2.)(1- C~)C = 0

and the dispersion relation is found by putting the system determinant equal to zero:

By putting Q = 0 one obtains
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(72)

(73)

(74)

(75)

(76)

which is the equation for the velocity CRpl of Rayleigh waves along a plate edge in the plane
stress approximation, and by letting Q --> CD one obtains the plane strain equation,

(77)

for the Rayleigh wave velocity CRp'

The dispersion relation cRlcs as a function of ruhlcs is shown in Fig. 2 for Poisson's
ratio v = 1/3, i.e. k = 1/2. It is seen that the plate edge Rayleigh wave velocity initially
decreases somewhat when the frequency increases.

For Q « 1 one obtains:

(78)

where

0.94

0.935 r
!d.(f) 0.93

0:
u

-iD.925
Uo
~ 0.92

0.915

0.91
o 2 4 6 8

Frequency. c.oh/cs

10

Fig. 2. Dispersion relation cR!c, vs wil/c, for Rayleigh waves. c. ---+ CRpl as w ---+ O. and CR --> cRr as
w ---+ w: k = 1/2 (v = 1/3).
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(79)

(80)

(81)

Function P vanishes for CR = CRpb the Rayleigh wave velocity in the plane stress approxi
mation. A solution to eqn (78) within O(Q2

) can be found by putting

(82)

where

One can show that D < 0, i.e. the velocity of Rayleigh waves along a plate edge decreases
initially with increasing frequency, as observed from Fig. 2 for a special case. For this case,
Poisson's ratio v = 1/3, i.e. k = 1/2, one obtains from eqn (82):

C (hW)2~. ~ 0.91940-0.02393 -
Cs Cs

if hw/cs is small compared with unity.

(85)

6. CRACK PROPAGATION IN PLATES

Mode I crack propagation will be studied, since mode II is very seldom associated with
crack propagation in plates. To simplify the investigation, the crack is assumed to be driven
by forces on the crack faces, moving with constant velocity, V. Thus a wedging type loading
is studied. The plate is assumed to be large enough, compared with the plate thickness and
the load extension, that it can be regarded as infinite, and the crack is consequently regarded
as semi-infinite, x < Vt, Y = O. With these assumptions, the Galilean transformation can
be used:

x'=x-Vt, y'=y, z'=z, (86)

where coordinates with a prime move with the crack edge. The transformation implies that

aF ar
-=-V~at ax' (87)

if r(x',y') = F(x,y, t).
For simplicity, the prime will be dropped in the following, i.e. x, y, z should be

understood as the moving coordinates and previously used function symbols (such as <I>
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and \II) as functions of these coordinates. The equations of motion, (36) and (37), will take
the form

(88)

(89)

where

(90)

and

v
Y =-.

Cs

(92)

The representations of the strains Bn B) and Yn will take the same form as eqns (38)-(40),
whereas the strain Cz and the normal stresses will be represented as

(93)

(94)

(95)

(96)

6.1. Solution of the equations ofmotion
With the ansatz

(97)

to the solution of eqn (88), one finds the characteristic equation

(98)

with the positive solutions



2468 K. B. Broberg

(99)

[
2
00l JIr 1 = :x (a; +a;;) + - J 2

X2
I

When :x --> 0, )'1 --> apl:X and ..1.2 --> l/X.
Equation (89) is satisfied by

(100)

(101)

A general solution, which remains bounded as y --> - 00, symmetrical with respect to
x for <D and anti-symmetrical for '¥, is

<D = 1~ (A eAIY +B eA2Y
) cos (ax) d:x

'¥ = 1~ C ea,oy sin (ax) d:x.

(102)

(103)

6.2. Response to a load moving along the plate edge
The edge y = 0 of the semi-infinite plate y ~ 0 is assumed to be subjected to a load,

moving with velocity V in positive x direction, with the distribution

P 6
(J = -_._-

Y n 62+X2

LX,' = JiYxy = 0

ik
LV: = Ji~ = O.. uy

(104)

(105)

(106)

These equations constitute the boundary conditions. When 6 --> 0 the right part of eqn (104)
can be written as - P times the Dirac delta function, i.e. the load is concentrated to a line
load at x = O. Insertion of eqns (102) and (103) into the boundary conditions, after use of
eqns (95), (40) and (93), gives:

(107)

(108)

(109)

Inversion gives

(110)

(111)
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From these equations A, Band C are determined:

Pe-O X 2(Al +A2)1.l}'2
C = --? '---D---'

nJ-lr:r

where
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(112)

(113)

(114)

(115)

(116)

The displacement gradient ev/cx on y = 0 can now be determined. One obtains:

ev a2
<1> a2'¥ in I-a~ 2 .

-;;- = ---, - -- = - -- iX C SIO (iXX) da
OX aXe)' ex2 0 2

where

Asymptotic expressions for K(iX) are:

K(iX) = ap

4a,ap- (I +a;)2

I (I+an2(a~-a~a(2ap+as) I+-_. . -+ ....
2X2 asap(ap+as)2[4asapl-(l+a~)2]2 :t2

(117)

(118)

(119)

(120)

One observes that K(O) is positive if V < CRpl. the Rayleigh wave velocity along a plate edge
in the plane stress approximation, but negative if V> CRp!> and that K( OCJ) is positive if
V < CRp, the plane strain Rayleigh velocity, but negative if V> CRp'

The integral in eqn (117) is convergent even for 15 = 0 at non-zero X(i.e. with exception
for the plane stress approximation), which implies that the response for a delta function
load, a .. = - PI5(x). is
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au (l-a2)PfX
-:;-. = - S K(ex) sin (exx) dex.
ex nfJ. 0

(121)

If X = 0, i.e. the plane stress approximation, K(ex) = K(O), and b can be put to zero
only after performing the integration. One obtains

iJu _ _ apl(1-a~)P

ax nfJ.[4asapl-(1+a~)2] x
(122)

For plane strain one obtains the same result, except that apl is substituted by ap' Therefore
the solution to any problem associated with loads moving with constant velocity in plane
stress or plane strain, for instance a train of coplanar cracks, can be obtained by solving
the static problem (V = 0) and then multiplying by a velocity dependent function,

(123)

As is evident from the form of eqn (121), this is not possible in the present thin plate
approximation. Function Y(y) could, appropriately, be called the Yoffe function, cf. Yoffe
(1951).

6.3. The crack problem
The load on the crack faces is assumed to be

<Jy = j~(x) for x < O,y = O. (124)

It is assumed that (Jx)fo(x) is integrable; this condition becomes apparent later, after
inspection of an analytic solution.

The semi-infinite plate y ~ 0 is regarded. The stresses on the boundary y = 0 are

Tn = 0

where

j~(x)=O for x>O

f(x) = 0 for x < O.

f(x) is thus unknown for x > 0, whereas.!;\(x) is known.
Now the function

nfJ. (au)91 (x) = --, -:;-
l-a~ ox y~o

is introduced. It will be decomposed into two parts:

(125)

(126)

(127)

(128)

(129)

(130)
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go(x) = 0 for all x

g(x) = 0 for x > o.
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(131)

(132)

(133)

g(x) is thus unknown for x < O.
From the response (121) to (J .. = -P/5(x) one can obtain the response for the load

distribution (125). This can be written as a convolution integral,

(134)

and, consequently, one obtains for y = 0:

gl(x) =g(x) = f+: [f(()+f~(m LYC K(a) sin [ex(x-()] dad(. (135)

The following Laplace transforms are now introduced:

F(p) = P J~Cfk e-P'f(x) dx = p f' eP\f(x) dx, .o/lp ~ 0 (136)

G(p) = p J+: e-P'g(x) dx = pf x e-P'g(x) dx, f7tp::::; 0, (138)

where fJJl denotes the real part.
It should be noted that the transforms are defined in a dimension-true way. Since the

right part of eqn (135) contains a convolution intergral, Laplace transformation of this
equation encounters the transform

p fx: e- P' sin (ax) dx = na[b(ip+ a) +/5(ip-ex)], f7tp = 0

and thus the result is

n[F(p) +Fo(p)] .lEl. K(lpj) = G(p), f7tp = O.
p

(139)

(140)

This is a Wiener-Hopf equation. F(p) and G(p), regular in the right and left p-half-plane,
respectively, and on the imaginary axis, are to be determined, whereas Fo(p), regular in the
left p-half-plane, including the imaginary axis, is known. An investigation shows that K(a)
possesses no real, non-negative singularities, and consequently K(lpl) is regular on the
imaginary axis.

In order to solve the equation, K(jpl) will first be factorized. This can be done by
decomposition of In [K(lpl)!K( oc)], which possesses the required behaviour as p -4 ± ioo.
The result will be written as
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K(lpl) = K(cAJ)'k+(p)'L(p), Ylp = 0, (141 )

where k + (p) is regular in the right p-half-plane, including the imaginary axis, and L (p) is
regular in the left p-half-plane, including the imaginary axis. One obtains:

I f+lCCln[K(lq!)/K(OO)]
Ink+(p) = - -2. dq,

7!l -leD q-p

(142)

(143)

I f+I".ln[K(lql)/K(OO)] ....
Ink (p) = -2. dq, f}£p ~ O.

7!l -IX q-p
(144)

When p -> 0 these integrals can be written as the sum of one integral taken in the sense of
the Cauchy principal value (and vanishing, since the integrand is anti-symmetric), and one
integral with the path indented around p = o. The results are:

IK(O)
k+(O) = L(O) = 'I} K(oo)· (145)

When p -> ± x the integrals are essentially determined by "large" values of the integration
variable, and one obtains:

Next the factor Ipl/p in eqn (140) will be factorized. One obtains

Ipl r+ (p)

p r_(p)'

where

r + (p) = p12, branch cut along the negative real axis

r (p) = ip U , branch cut along the positive real axis.

(146)

(147)

(148)

(149)

Branches are chosen so that r+ is positive on the positive real axis and r_ is negative on the
negative real axis.

Equation (140) can now be written in the form

The second term in the left part will now be decomposed:

L ( )
= _I f+i% Fo(q)r"- (q)L (q) d Ql> s:: 0

- P 2. , q, iAp"" .
m -l' qo(q_p)

(151 )

(152)

(153)
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The integrals are convergent, since k+(p) is finite both as p ~ ± ioo and as p --+ 0, r+ (p) is
proportional to pl/2, and Fo(P) is essentially proportional to p.

The Wiener-Hopf equation (150) can now be written so that the left part is regular for
~p ~ 0 and the right part regular for ~p ~ O. Then they define together a function that is
regular in the whole plane, and thus, since the physical quantities behave algebraically at
infinity, this function must be a polynomial of finite degree. Thus, for ~p = 0,

2 G(p)r - (p) 2

F(p)r+(p)k+(p)+p L+(p) = nK(oo)L(p) -p L_(p)

= A o+A 1P+A 2p2+ ... +Anpn (154)

and, consequently

(155)

As p ~ + 00 the integral in the expression for L+(p) is essentially determined by
"large" values of the integration variable, and thus

as p --+ + 00. (157)

The path of integration can be deformed to a path following the lower side of the real axis
from q = - 00 to zero, encircling the branch point q = 0 of r + (q) and continuing along the
upper side of the real axis to q = - 00. After a subsequent change of integration variable,
q --+ -q, one obtains:

I IX Fo( -q)
L+(p) --+ - - .. dq

n 0 q(~q)(q+p)

Similarly one obtains

IlCD F: ( )L_ (p) --+ - 0 -q dq
n 0 q(Jq)(q+p)

as p --+ + 00.

as p --+ - 00.

(158)

(159)

Whenp ~ +0, the integral in the expression for L+ (p) is essentially determined by "small"
values of the integration variable and, in essentially the same way as for p --+ ± 00, one
obtains:

SAS 32 17-18-0
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L (p)---+_~JK(O) reo Fo(-q) dq as p---++O
+ n K(oo) Jo q(.jq){q+p)

L () IJK(O)IOC Fo(-q) dp ---+ - -- q as p ---+ -0.
- n K(oo) 0 q(.jq){q+p)

(160)

(161)

Physical conditions now determine all constants A o, A I ... An to O. Since v is finite as
x ---+ -0, G(p)jp must be finite as p ---+ - 00, which gives A 2 = A 3 = ... = An = 0, and the
condition that f(x) is integrable implies that F(p) jp must be finite as p ---+ +0, which gives
A o = AI = O.

It now remains to invert the transforms

~p~O,

(162)

(163)

where the last members in the two expressions are written in a form suitable for real values
of p.

Functions k + (p) and k _(p) seem to be too complex to enable a full inversion; they
will therefore be inverted only for values of x that are large, compared with the extension
of the loadfo(x) and to the plate thickness 2h, and for values of x that are small, compared
with these lengths. This corresponds to seeking asymptotic expressions for F(p) and G(p)
as p ---+ 0 and p ---+ 00, respectively.

As p ---+ +0 the integral in eqn (162) is determined by "small" values of the integration
variable, and thus

I f+loo F ( )r ( )
F() P"; P .. 0 q + q d +0p ---+ --. q as p ---+ •

2m -iet: q2(q_p)
(164)

In the same way as for L+ (p) the path of integration is deformed towards the negative real
axis and, after subsequent change of the sign of the integration variable, one obtains:

F(p) ---+ - p.jp (00 FoC -q) dq as p ---+ +0.
n Jo q(.jq)(q+p)

This transform can be inverted (see Appendix A), and one obtains:

In the same way one finds the asymptotic expression for the strain gradient,

(165)

(166)
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, fYe Fo( -q)
G(p) -> K(O)py -p , dq as

o q(yq)(q+p)
p-> +0
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(167)

(168)

Both asymptotic solutions for Ixl -> oc; agree with those obtained in the plane stress
approximation, cf. Craggs (1960).

For "small" values of x it is suitable to make some variable substitutions in order to
write F(p) in the form

I P
F(p} = ~'---' M(p),

P kT(p)

where

p.JpfX A(s)p-B(s)s
M(p) =- ds

n 0 S(y'S)(S2 +p2)

and, with of denoting the imaginary part,

8(s) = J[Fo(is)k+ (is)e lrr4
].

Inversion of F(p) for "small" values of x is discussed in Appendix B. The result is

I I fCL A(s)
f(x) -> -~. -/- --,-, ds as x -> + O.

n.Jn ",jX 0 SyS

(169)

(170)

(171)

(172)

(173)

The asymptotic expression for the strain gradient as x -> - 0 is obtained in essentially
the same way:

One can write [note that k + (is) is real] :

sk+(is) fO
A(s) = - --'2- (sins/(I +cossIW(o(O d(.

y -x.

Thus

fX. A(s) fO fX k, (is)
-,ds = - j~(O -~-(sinsl(1 +cosslW dsd(.

o s.,js -x. 0--/ (2s)

(174)

(175)

(176)

Assume now that the load fo(x) extends from x = 0 to x = - L and that L is "very
small" ; this requirement will be discussed later. By writing the inner integral in eqn (176)
as
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1 ff k+(ir/IW .
-[YI (sm r+cos r) dr

<: 0 J(2r)
(177)

and then, since only small values ofl¢1 are concerned, substitutingk+(ir/IW by k+(oo) = 1,
one obtains:

and, consequently,

(178)

I I fX t ( ')
f(x)-+ -_. -,~d¢

n .Jx 0 .J¢
as x -+ +0 (179)

(180)

This result is actually the plane strain solution, cf. Craggs (1960), for the crack edge
neighbourhood. On the other hand, if L is "very large" (to be discussed later), one can
substitute k+(ir/IW by k+(O) = J[K(O)IK(w)] and one obtains:

as Ixl -+ O. This result can be described as plane stress like behaviour near the crack edge:
one observes in particular that the energy release rate is the one found in the plane stress
approximation, although the expressions for[(x) and aulax are such that the ratio between
the stress intensity factor and the corresponding factor for avlax coincides with the ratio
characteristic of plane strain.

As to the question about the meaning of "very small" and "very large" values of L,
one notices that the function L(ir/IW in the integral

I fX k+ (ir/lW .-IvI ". (smr+cosr)dr
<: 0 J(2r)

(183)

decreases from k +(0) to k +(w) as r increases, and that, as follows from eqn (119) the
essential part of this decrease takes place during the interval from r/l ¢I = 0 to

(184)

One further notices that the integral
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l'y sin r+cos r
,dr

o y'(2r)
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(185)

equals .In if r xc = 00, and deviates less than 20% from this value if r xc ~ 2n. The inner
integral in eqn (176) is thus essentially determined by large values of s = r/I~I if

L
-« 2nR(y)
X

(186)

which can be taken as a criterion for plane strain domination of the field near the crack
edge. Small values of r/I~I give the major contribution to the integral if

LX» 2nR(y) (187)

which can be taken as a criterion for a plane stress like field near the crack edge.
For values of k around 0.5 (v around 0.33) the function R(y) is virtually independent

of y up to about 95% of the Rayleigh wave velocity in the plane stress approximation. It
equals 1/2 for k = 1/2 and y = O. The quantity 2nR(y) is therefore approximately equal to
3 for most interesting applications. Since X= h/3 for k = 1/2 the transition from a plane
strain dominated field near the crack edge to a plane stress like field will take place when
the extension L of the load becomes of the same order as the plate half-thickness h.

7. DISCUSSION

Applied to cases in which the crack faces are traction free the results indicate that
plane stress like behaviour near the crack edge occurs for cracks that are considerably
longer than the plate thickness, at least for velocities that are not close to the Rayleigh
wave velocity in the plane stress approximation. Since this is by far the most common
situation, one can conclude that in general the field near the edge of a running crack in a
plate shows plane stress like behaviour. Such behaviour is not identical with that found
from the plane stress approximation. For the case k = 1/2 (v = 1/3) one finds that the stress
intensity factor is about 6% higher than in the plane stress approximation, and the crack
opening displacement about 6% lower. This departure from the plane stress approximation
indicates the plane strain infuence near the crack edge: one can envisage a field rather
similar to that in the plane stress approximation beyond some distance from the crack edge,
but the plane strain contribution in the close vicinity of the edge acts stiffening on the
stress-strain field. The plane strain influence near the crack edge is manifested by the fact
that the ratio between the stress intensity factor and the corresponding factor for au/ax
coincides with the ratio characteristic of plane strain.

By studying the behaviour of £= near the crack edge it might perhaps be possible to
estimate how far from the edge the field agrees approximately with the field in the plane
stress approximation. The results obtained about the influence of the extension L of the
load/(x) might perhaps be interpreted so that the plane stress approximation is fairly well
realized at distances from the crack edge that are of the same order as half the plate
thickness or larger. This can be compared with the estimates by Yang and Freund (1985)
and by Rosakis and Ravi-Chandar (1986) for stationary cracks, that the plane stress
approximation is approximately valid at distances larger than half the plate thickness from
the crack edge.

The energy release rate at plane stress like behaviour near the crack edge was found
to be the same as in the plane stress approximation. and therefore, as it appears, the same
as it would be if the stress intensity factor and the crack opening displacement were
determined at a somewhat larger distance from the crack edge. This result can be compared
with the result for stationary cracks in a plate where the J integral for a path near the crack
edge equals the J integral for a sufficiently remote path (Broberg, 1987).
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It is not easy to extract the influence of lateral inertia from other effects, particularly
the one of apparent plane strain conditions near the crack edge, but it is clearly of minor
importance. This result is not obvious: an attempt to estimate the energy due to lateral
motion from the displacement w calculated by using the plane stress approximation, indi
cates a considerable importance of the lateral inertia.

The theoretical maximum crack edge velocity appears to be that of plane stress
approximation Rayleigh waves, even though the plane strain Rayleigh wave velocity could
be the theoretical maximum in the rare event that the extension L of the load f(x) is
considerably shorter than the plate half-thickness.

The present approximation for crack propagation in a plate does not ensure traction
free plate surfaces. This could be achieved by going one step further and allowing a parabolic
rather than a constant variation over the thickness of the stress E:z• This possibility is outlined
in Appendix C. It is believed, however, that the main conclusions in the present paper
remain valid, at least approximately, even in such a more accurate approximation.
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APPENDIX A

The expression

'I' F ( )F(p) =P..JP 0 ~q dq
1! 0 q(Jq)(q+p)

which occurs in eqn (\ 65), is to be inverted. Insertion of the expression for Fo(q) gives

,I~ IX dF( ) - P"';P . -q(/' (;)d" qp - ~ e 0 -" ~, .
1! 0 0 . • (..jq)(q+p)

(AI)

(A2)

If the Laplace transform of a function of x is written with the operator Lpx and the inverse operator as L;;, one
obtains:

I {, IX. IX . dq }f(x) = ~-Lp,l p.Jp e-q'fo(-~)d~( 1)( )
n 0 (I vq q+p

1 IX r (0) {"uc -(q I }
= ~ -~L;;' ~J e PvP d~

n 0 ~ 0 (Jq)(q+p)

(A3)

but

is a function of p~, say

Thus

h(p~) = h(~p) = Lpx----

(J~)(~+ I)

(M)

(AS)
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and one obtains:

[(x) = ~ ~I_, rx
(.J Ofl)( - {,) d~.

n.JxJI) x+~

APPENDIX B

Inversion of the expression

p'.Jp

p'+s'

which appears in eqn (169), gives the result
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(A6)

(A7)

(BI)

1 1 I I"Sin(SX-U)
---------;-,,15 I du,
.J(nx) .In I) ...ju

and inversion of

p.Jp

p'+S'

also appearing in eqn (169), gives

x>o (B2)

(B3)

1 In cos (sx-u)
-- , du, x>o.
.J(ns) I) .Ju

Therefore the inversion of M(p) is

I IX {A(S) 1 A(s) I" sin (sx- u) Sis) in cos (sx- u) d }mix) = --, --, . ---;- ~ -~ , du - -- , u ds.
n.Jn I) s.Js ...j X S I) .J u s I) VU

For "small" values of x inversion of

appearing in eqn (169), is found by letting p ---> + CfJ. From eqn (143) one obtains:

and thus

(B4)

(BS)

(B6)

(B7)

p 1 rx K(s)
k+(p)--->P-;JI) lnK(CfJ)

Use of asymptotic relations for Laplace transforms gives

as p ---> + oc. (BS)

1 IX K(s)k(x) ---> "(x) - - In~-, ds
n I) K(CfJ)

as x--->+o, (B9)

where k(x) is the inversion of pjk+ (p). Since the inversion of F(p), given in eqn (169), is

one obtains

(BID)
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1 I IX A(s)j(x)-.-. . -,-ds
rr..jrr ."jX 0 sJs

APPENDIX C

as x-. +0. (BII)

In the main text the strain E, was supposed to be constant over the thickness.
Here a parabolic variation is assumed. This implies that

u = u(x,y, t), V = vex, y, t)

7
3

W = EO(X,y, t)· Z+8\ (x,y, t) .~.

Then

Ex = ExCX, y, t), 8,. = E,.(X, y, t)

7 2

E, = 80(x,y,t)+3E\(X,y,t).~

DU DV
Y... = ay + ax

The kinetic energy, T, and the potential energy, U, are given as:

The condition of traction-free plate faces

a,=O for z=±h

can now be satisfied. One obtains, using Hooke's law:

E\ can thus be expressed in terms of Eo, Ey and 8,. Thus one can write

fh . (. • • • . au ov DEx aEx DEy DEy a80 OEO)
(T - U) dz = F U, V,E x ' E",Eo,Ex ,E,.,Eo, -a ';;-'''''''-0 ,-:;-,,,,,,

-h '. Y uX uX uy X oy uX uy

and the variation of

M = e5fLLL(T - U) dzdydxdt = 0

(CI)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)

(C8)

(C9)

(CIO)

(CII)

(CI2)

(CI3)

can be performed with respect to variations of u, v and Eo, producing three equations of motion, corresponding to
eqns (24)-(26).


